Glenohumeral Internal Rotation Deficit: Mechanisms and Operational Definitions for Clinicians

Luke Bahnmaier, MS, ATC, LAT, OTC

MTATA Summer Symposium

June 4th, 2016
Disclosures

• No one pays me for selling/promoting things
Objectives

- Recognize the frequency of shoulder pain in youth overhead athletes
- Understand the association of GIRD and injury risk in overhead athletes
- Define the three main mechanisms that contribute to internal rotation deficit of the shoulder in overhead athletes
- Apply the clinical definitions of GIRD to prevent and treat upper extremity injuries in overhead athletes
Discussion Points

1) Mechanisms of GIRD
2) What do bony adaptations of the shoulder mean for shoulder ROM?
3) How does a tight posterior capsule affect our treatment decisions as clinicians?
4) What ROM deficits should be address clinically?
5) Are these ROM changes protective adaptations, or pathological processes?
Combatting Demands of OH Athletics
Sports Specialization....

Little research at this time

Clinically, we see the impact...
Sports Specialization...

- 30.7% Risk of Arm Tiredness & Arm Pain
- 43.4% Risk of Pitching-related Injuries
- 19%

Yang et al., *AJSM* 2014
Youth Baseball...

1,563 7-12 year olds

15.9% Shoulder Pain

29.2% Elbow Pain

Matsuura et al., *Phys Sportsmed* 2016
Youth baseball...

In a survey of over 200 healthy baseball players ages 8-18

- 74% reported pain while throwing
- 80% reported pain the day after throwing

46% reported being encouraged to continue playing despite arm pain

Makhni et al., AJSM 2015
Clinically, we see a large number of year-round volleyball, baseball, and softball players with chronic shoulder and/or elbow pain.
What *pathology* is at play?
“Shoulder Impingement” is not a specific diagnosis that we can treat in young patients.
Where it started...
The Disabled Throwing Shoulder (Burkhart et al., 2003)
Definition of GIRD...

It Has Evolved

Limitation of Internal Rotation on dominate vs. non-dominant shoulder

– Originally described as anything over 25 deg.
Definition of Total Range of Motion...

Difference in Total ROM (TRM) of dominate vs. non-dominant shoulder (ER + IR)

- Passive, supine in 90 deg. ABD, scapula stabilized
ROM Deficits → INJURY

- Glenohumeral internal rotation deficit (GIRD)
 - Players with ≥ 25 degree deficit in internal rotation on throwing side were at 4 times greater risk for upper extremity injury (Shanley, 2011)

- Loss in total range of motion (TRM)
 - Pitchers with deficits > 5 degrees were at 2.5 times greater risk for shoulder injury (Wilk, 2011)
 - Pitchers with deficits > 5 degrees were at 2.6 times greater risk for elbow injury (Wilk, 2014)

- Loss in shoulder flexion range of motion
 - Pitchers with deficits ≥ 5 degrees were at 2.8 times greater risk for elbow injury (Wilk, 2014)

- Loss in shoulder external rotation
 - < 5 degrees greater external rotation in the throwing shoulder placed athlete 2.2 times more likely to be on the disabled list due to shoulder injury (Wilk, 2015)
What are the mechanisms of Glenohumeral Internal Rotation Deficit?
MECHANISMS OF GIRD

BONY ADAPTATIONS

CAPSULAR

SCAPULA/SOFT TISSUE
MECHANISMS OF GIRD

BONY ADAPTATIONS

CAPSULAR

SCAPULA/SOFT TISSUE
Humeral Torsion

“bony twist about the long axis of the humerus”

Occurs during skeletal immaturity

Humeral head remodels in a more posteriorly oriented direction
BONY ADAPTATIONS

Humeral Torsion
Measured via CT or Ultrasound imaging
Humeral Torsion

On average, retroverted 25-35 deg.

Greenberg et al., 2015
BONY ADAPTATIONS
Table 1. Side-to-side differences in humeral retrotorsion in adult throwing athletes and normal population

<table>
<thead>
<tr>
<th>Author</th>
<th>Subject</th>
<th>Measurement Type</th>
<th>Side-to-Side Difference in Retrotorsion, deg, mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pieper⁹</td>
<td>51 Olympic handball players</td>
<td>Radiograph</td>
<td>9.4</td>
</tr>
<tr>
<td>Crockett et al⁹</td>
<td>25 professional pitchers, 25 nonthrowing adults</td>
<td>CT</td>
<td>17</td>
</tr>
<tr>
<td>Reagan et al⁹</td>
<td>54 collegiate baseball players</td>
<td>Radiograph</td>
<td>10.6</td>
</tr>
<tr>
<td>Oshahr et al⁹</td>
<td>19 collegiate baseball players</td>
<td>Radiograph</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Table 2. Side-to-side differences in humeral retrotorsion in youth throwing athletes

<table>
<thead>
<tr>
<th>Author</th>
<th>Age Group</th>
<th>Side-to-Side Difference in Humeral Retroversion, deg, mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamamoto et al⁸</td>
<td>Third and fourth graders</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>Fifth graders</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Sixth graders</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>Seventh graders</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>Eighth graders</td>
<td>3.6</td>
</tr>
<tr>
<td>Hibberd et al⁹</td>
<td>Youth (6-10 y; mean, 8.3 y)⁶</td>
<td>7.5 ± 10.1</td>
</tr>
<tr>
<td></td>
<td>Junior high (11-13 y; mean, 11.9 y)⁶</td>
<td>10.7 ± 9.9</td>
</tr>
<tr>
<td></td>
<td>Junior varsity (14-16 y; mean, 14.6 y)⁶</td>
<td>15.3 ± 11.1</td>
</tr>
<tr>
<td></td>
<td>Varsity (16-18 y; mean, 16.9 y)⁶</td>
<td>16.2 ± 11.4</td>
</tr>
<tr>
<td>Whiteley et al⁸</td>
<td>Adolescent (mean, 16.6 ± 0.6 y)⁶</td>
<td>11.2</td>
</tr>
</tbody>
</table>

*Statistically significant side-to-side differences noted.

Greenberg et al., 2015
Humeral Retrotrosion and GIRD/Posterior capsule thickness

- \uparrowHR \rightarrow \uparrow GH ER, \downarrow GH IR, \uparrowPCT in 24 collegiate baseball players (Thomas et al., 2012)

- \uparrowHR \rightarrow \uparrow GH ER, \downarrow GH IR, \uparrowPCT in 36 8-12 year olds (Astolfi et al., 2015)

- No diff. in 35 softball players compared to matched controls (Hibberd et al., 2014)

- Professional pitchers w/ GIRD display \uparrowhumeral retrotorsion & \downarrowER and TROM compared to those w/out GIRD (Noonan et al., 2015)

- \uparrow in humeral retrotorsion accounts for age-related loss of GH IR (Hibberd et al., 2014)
BONY ADAPTATIONS

How do we measure this clinically?

Horizontal Adduction Test
What does this mean?
Is Humeral Retrotorsion a protective adaptation, or pathologic process?
MECHANISMS OF GIRD

- BONY ADAPTATIONS
- CAPSULAR
- SCAPULA/SOFT TISSUE
What is the role of the posterior capsule in the throwing motion?
• PCT ↑ on dominate side → (-) correlation w/ PCT & IR, (+) correlation w/ PCT thickness and ER & Scapular Upward Rotation (Thomas et al., 2011)
• PCT (+) correlated with increasing HR (Thomas et al., 2012)
• Posterior shoulder capsules are thicker and **STIFFER** (less elastic) in dominate shoulders of healthy baseball players (Takenaga et al., 2015)
• Posterior capsules **THICKER** in 8-12 year old youth baseball players (Astolfi et al., 2015)
What does a thicker, less elastic posterior capsule mean?
MECHANISMS OF GIRD

BONY ADAPTATIONS

CAPSULAR

SOFT TISSUE
Conclusion: Passive range of motion is significantly decreased immediately after baseball pitching. This decrease in range of motion continues to be present 24 hours after throwing. High levels of eccentric muscle activity have previously been observed in the shoulder external rotators and elbow flexors during pitching. These eccentric muscle contractions may contribute to acute musculotendinous adaptations and altered range of motion. The results of this study may suggest a newly defined mechanism to range of motion adaptations in the overhead throwing athlete resulting from acute musculoskeletal adaptations, in addition to potential osseous and capsular adaptations.

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
<th>24 Hours After</th>
<th>P for ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>136.5 ± 9.8</td>
<td>135.3 ± 9.3</td>
<td>136.5 ± 9.0</td>
<td>.213</td>
</tr>
<tr>
<td>IR</td>
<td>54.1 ± 11.4</td>
<td>44.6 ± 11.9</td>
<td>46.5 ± 10.0</td>
<td><.001 b</td>
</tr>
<tr>
<td>TM</td>
<td>190.6 ± 14.6</td>
<td>179.9 ± 13.7</td>
<td>182.9 ± 11.5</td>
<td><.001 b</td>
</tr>
<tr>
<td>Elbow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexion</td>
<td>144.9 ± 7.1</td>
<td>144.7 ± 5.9</td>
<td>145.8 ± 5.8</td>
<td>.264</td>
</tr>
<tr>
<td>Extension</td>
<td>−5.1 ± 9.5</td>
<td>−8.3 ± 8.8</td>
<td>−7.7 ± 8.9</td>
<td><.001 b</td>
</tr>
</tbody>
</table>

aData are mean degrees ± SD. ANOVA, analysis of variance; ER, external rotation; IR, internal rotation; TM, total motion.
bSignificantly different than before throwing (P < .01).
SOFT TISSUE

Decreases in rotator cuff stiffness were associated with acute range of motion gains in baseball players with ROM deficits (Bailey, 2015).

IASTM to the posterior shoulder showed acute improvements in shoulder range of motion (Laudner, 2014).
Anterior Shoulder

• Healthy individuals with short pec minor resting length demonstrated scapular kinematic patterns similar to subjects with shoulder impingement (Borstad, 2005)

• Pec Minor may adaptively tighten when exposed to maintained postures and repetitive movements leading to scapular protraction and anterior tilting (Morais, 2015)

• Increased scapular upward rotation and PM tightness in dominate shoulder of elite youth Swedish tennis players (Cools, 2010)

• Addressing Pec Minor tightness may lead to increased activity of scapular stabilizers, and decrease anterior tilting (Lee, 2015)

Very Limited Research at This Time!

Don’t Forget about the Pec Minor!!!!!
SOFT TISSUE

What Do These Soft Tissue Issues Mean?
Acute changes in ROM likely due to changes in soft tissue stiffness

We can increase ROM by addressing this stiffness

Tight pec minor → ↑ anterior tilt → ↓ shoulder ROM

Acute ROM changes = muscular, Chronic ROM changes = capsular
Addressing GIRD Clinically

RANGE OF MOTION!!!!

Pathologic GIRD

GIRD ≥ 18-20° + TROM LOSS ≥ 5° OR ERD ≥ 5°

If they fall into this category, start with stretching

Manske et al., 2013
“It is possible to catch a problematic shoulder before it becomes a painful shoulder”

-Brett Burton, PT, DPT, ATC, CSCS
Clinical Take-home Points

1) GIRD has been associated with increased risk of shoulder and elbow injuries
2) Multiple factors contribute to the development of GIRD
3) Range of Motion
4) Range of Motion
5) Range of Motion
6) We can usually fix this problem very easily (and PREVENT injury) with focused, specific stretching of the shoulder
Additional Resources for Overhead Athletes

• Eric Cressey Blog/Twitter/Facebook
 – Cressey Sports Performance

• Mike Reinold Blog/Twitter/Facebook/Podcast
 – Champion Physical Therapy, dual credentialed

• Brett Burton, DPT, ATC
References

References

